Convection-enhanced delivery of methotrexate-loaded maghemite nanoparticles
نویسندگان
چکیده
Convection-enhanced delivery (CED) is a novel approach for delivering drugs directly into brain tumors by intracranial infusion, enabling the distribution of high drug concentrations over large tissue volumes. This study was designed to present a method for binding methotrexate (MTX) to unique crystalline, highly ordered and superparamagnetic maghemite nanoparticles via human serum albumin (HSA) coating, optimized for CED treatments of gliomas. Naked nanoparticles and HSA- or polyethylene glycol (PEG)-coated nanoparticles with/without MTX were studied. In vitro results showed no toxicity and a similar cell-kill efficacy of the MTX-loaded particles via HSA coating to that of free MTX, while MTX-loaded particles via PEG coating showed low efficacy. In vivo, the PEG-coated nanoparticles provided the largest distributions in normal rat brain and long clearance times, but due to their low efficacy in vitro, were not considered optimal. The naked nanoparticles provided the smallest distributions and shortest clearance times. The HSA-coated nanoparticles (with/without MTX) provided good distributions and long clearance times (nearly 50% of the distribution volume remained in the brain 3 weeks post treatment). No MTX-related toxicity was noted. These results suggest that the formulation in which HSA was bound to our nanoparticles via a unique precipitation method, and MTX was bound covalently to the HSA, could enable efficient and stable drug loading with no apparent toxicity. The cell-kill efficacy of the bound MTX remained similar to that of free MTX, and the nanoparticles presented efficient distribution volumes and slow clearance times in vivo, suggesting that these particles are optimal for CED.
منابع مشابه
Preparation of Methotrexate loaded PLGA nanoparticles coated with PVA and Poloxamer188
Objective(s): Nanoparticles offer an attractive platform for drug delivery through a wide variety of the body's physiological barriers. Furthermore, modification of nanoparticle surface with moeites such as Poloxamer188 can enhance their accumulation and localization at disease site. In this work, we investigated the physiochemical effect of a scavenger receptor (SR-BI) interac...
متن کاملSynthesis of protein-coated biocompatible methotrexate-loaded PLA-PEG-PLA nanoparticles for breast cancer treatment
Background: PLA-PEG-PLA triblock polymer nanoparticles are promising tools for targeted dug delivery. The main aim in designing polymeric nanoparticles for drug delivery is achieving a controlled and targeted release of a specific drug at the therapeutically optimal rate and choosing a suitable preparation method to encapsulate the drug efficiently, which depends mainly on the nature of the dru...
متن کاملFormation of methotrexate-PLLA-PEG-PLLA composite microspheres by microencapsulation through a process of suspension-enhanced dispersion by supercritical CO2
BACKGROUND The aim of this study was to improve the drug loading, encapsulation efficiency, and sustained-release properties of supercritical CO(2)-based drug-loaded polymer carriers via a process of suspension-enhanced dispersion by supercritical CO(2) (SpEDS), which is an advanced version of solution-enhanced dispersion by supercritical CO(2) (SEDS). METHODS Methotrexate nanoparticles were ...
متن کاملMethotrexate Nanoparticles Prepared with Codendrimer from Polyamidoamine (PAMAM) and Oligoethylene Glycols (OEG) Dendrons: Antitumor Efficacy in Vitro and in Vivo
The novel methotrexate-loaded nanoparticles (MTX/PGD NPs) prepared with amphiphilic codendrimer PGD from polyamidoamine and oligothylene glycol dendrons were obtained via antisolvent precipitation method augmented by ultrasonication. Based on the excellent hydrophility of PGD, the drug-loaded nanoparticles could be investigated easily with the high drug-loading content (~85.2%, w/w). The MTX/PG...
متن کاملHighly penetrative, drug-loaded nanocarriers improve treatment of glioblastoma.
Current therapy for glioblastoma multiforme is insufficient, with nearly universal recurrence. Available drug therapies are unsuccessful because they fail to penetrate through the region of the brain containing tumor cells and they fail to kill the cells most responsible for tumor development and therapy resistance, brain cancer stem cells (BCSCs). To address these challenges, we combined two m...
متن کامل